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Correlation transitions in the Ising chain with competing short-range
and long-range mirror interactions
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2Department of Theoretical Physics, Lajos Kossuth University, H-4010 Debrecen, Hungary
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We present exact four-spin- and string-correlation functions derived for an Ising chain with competing
geometrical nearest-neighbor short-range and mirror-image-type long-range interactions. UnusualTÞ0 corre-
lation effects were found, indicating qualitative changes in the behavior of the system in differentT domains.
These domains are not separated by a sharp, traditional phase transition, but are delimited by a temperatureTi

at which the exact connected four-spin-correlation function vanishes. At the sameTi the pair-correlation
function changes its character: The functional form of the correlation length and the nature of the long-range
decay are modified.@S1063-651X~98!09610-X#

PACS number~s!: 64.60.Cn, 02.70.Lq, 05.50.1q
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I. INTRODUCTION

The competition between long- and short-range inter
tions in low-dimensional spin systems has been extensi
studied recently. The unusual properties caused by com
ing interactions, the common sources of frustration, m
these spin systems relevant to the description of a wide
riety of physical phenomena. Applications span over the
lowing fields and effects. The crossover between the h
integer and integer spin-chain behavior implemented by s
ladders with competing interactions enables us to study
effects emerging in connection with the Haldane conject
@1#. Several material properties can be modeled us
coupled chains for heavy fermions, Kondo lattices, and sp
Peierls systems@2#. One can analyze the dimensional cros
overs in magnetic systems, in particular from chains
square lattices@3#. The first-order quantum phase transitio
in one dimension@4# can be studied with the help of one
dimensional spin systems. Coupled spin-chain models a
us to investigate the development ofD-dimensional magnetic
long-range order atT50 associated with interchain couplin
@5#. Low-dimensional spin systems can also be used to
insight into the nature of unusual ordering effects includ
local, topological, or hidden ordering@6# that also relate to
surface physics@7#. High-Tc superconductivity or the
Tomonaga-Luttinger liquids can be approached via Sr-C
ladders@8#.

These applications cover a large spectrum of models,
cluding classical, Ising, and quantum systems. The interp
between the different systems may be used to get insight
the nature of short-range ordering and finite-range orde
in quantum systems@2# or even to relate theT50 quantum
aspects to theTÞ0 classical behavior@9#.

Low-dimensional Ising spin systems are important in t
field since they serve as an intermediate step between
classical and quantum limits. In spite of their striking sim
plicity @10#, Ising systems are complex, exhibiting an e
tremely interesting behavior@11#. As examples, low-
dimensional Ising models containing competing interactio
have been used to give a coarse-grained representatio
PRE 581063-651X/98/58~5!/5403~7!/$15.00
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frustrated phase separation in high-Tc superconductors@12#,
to analyze the phase stability of metallic alloys@13#, to ana-
lyze surface properties@14#, to describe immunological reac
tions in biological systems@15#, and to describe fractal prop
erties and chaotic behavior@16# or even real compounds suc
as TMCON@17#.

From the great variety of long-range interactions used
these models, we concentrate on the mirror-image ty
interactions@20#. Their importance has been emphasized
Sahimi and Stauffer@15#, who proposed an Ising model wit
mirror-image-type interactions in order to descri
idiotypic–anti-idiotypic immunological networks in connec
tion with natural immune systems. Simons and Altshu
@21# studied a spin-1/2 Heisenberg antiferromagnetic s
chain based on an exchange between the spins and thei
ages via an inverse square pairwise potential. They sho
that this system reveals a multiplet structure similar
Haldane-Shastry model@22#. Furthermore, de Boeret al.
@23# pointed out that the structured patterns that emerge
such systems are reminiscent of those occurring in spino
decomposition. We note that the latter process is of gr
interest due to its relevance in different decomposition s
narios in order-disorder system transformations or in s
organization@23#.

The above considerations motivate us to find and st
the exact solution of an Ising chain with competing intera
tions. In particular, we consider mirror-image-type lon
range interactions together with short-range compone
consisting of geometrical nearest-neighbor couplings. T
system is equivalent to two coupled Ising chains with sho
range interactions only, which are obtained by folding t
system about its geometrical center position. Besides
properties related to strange local ordering effects atTÞ0
~screening effects in correlation functions or local orderi
that can only be detected far-away from the position wher
emerges!, the paper presents an exact calculation of fo
spin- and string-correlation functions for a nontrivial ca
@24#. Using these concepts, a completely new, pha
transition-like behavior was found. We find qualitative d
ferences in the behavior of the system in different tempe
5403 © 1998 The American Physical Society
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5404 PRE 58ISTVÁN DARUKA AND ZSOLT GULÁCSI
ture domains that are not separated by a sharp, traditi
phase transition, but are delimited by a temperatureTi at
which the exact connected four-spin-correlation funct
vanishes. At the sameTi the pair-correlation function
changes its character: The functional form of the correlat
length and the nature of the long-range decay are modifi
We interpreted this behavior as a peculiar frustration eff
of the competing interactions.

We mention that similar effects called correlation tran
tions emerging at the ‘‘disorder line’’ in the phase diagra
have been found in other Ising systems as well@18#. The
disorder line corresponds to a local minimum in the corre
tion length in the form of a cusp@18#. As will be shown
below, in our case this is not necessarily true. TheTi tem-
perature deduced by us in the present model is relate
zeros of the four-spin correlation function.

The paper is structurated as follows. In Sec. II we pres
the model together with the deduced results. A summar
Sec. III closes the presentation.

II. MODEL AND OBTAINED RESULTS

We consider an open chain ofN52L localized Si ,a5
61 spins with a mirror-image centerO at its geometrical
center position. Herei 51, . . . ,L indicates the distancedi
from O anda51,2 denotes the right~left! @1 ~2!# side of the
chain with respect toO ~Fig. 1!. With these notations and
HN5H̃N2(J11J3)S1,1S1,2, our HamiltonianHN is given by

H̃N52 (
i 51

L21 FJ1Si 11,1Si 11,21J2~Si ,1Si 11,21Si ,2Si 11,1!

1 (
a51,2

J3~Si ,aSi 11,a!G , ~1!

with the long range mirror-image interactionJ1 , the interac-
tion with the nearest neighbors of the mirror imageJ2 , and
short-range couplings with the geometrical nearest neigh
J3 . For example, in natural immune system models, a
calledT cell collects information about the invading virus v
the J1 andJ2 interactions, while the couplingJ3 invokes an
information restoring mechanism: TheT cell tries to repro-
duce some missing information about the virus simply
interpolation. To emphasize the connection with ladder pr
lems, note thatHN also describes two coupled chains@19#,
which are obtained by folding the system about the pointO.

FIG. 1. Illustration of the model. Each of the 2N spins interacts
with its mirror image, with the two neighbors of its mirror imag
and with the two geometrical neighbors. The coupling strengths
J1 ,J2 , andJ3 , respectively.
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In the following, we make use of the procedure presented
Ref. @20# and extend it to handle the mirror-image and ge
metrical neighbor interactions simultaneously to give an
act solution for the model.

The partition function is obtained by summing up th
spin-pair contributions (Sk,1 ;Sk,2), in steps for a fixedk,
starting fromk5L, and decreasingk by unity at each further
step. A recurrence relation emerges and the penultimate
gives

ZN

2L21
5 (

S1,1,S1,2

eb~J11J3!S1,1S1,2F (
p561

KL21
p V~p,S1,1,S1,2!G ,

S Kl 11
~1!

Kl 11
~21!D 5M0•S Kl

~1!

Kl
~21!D ,

where the coefficientsKl
(p) are determined recursivel

for 1< l<L21 and K1
(p)51. We have b51/kBT,

V(p,x,y)5exp(pbJ1)cosh@b(J21pJ3)(x1py)#, and M0 is
a 232 matrix given by (M0)n,m5dn,mf@(21)n11#
1(12dn,m)exp@(21)n11bJ1#, f@x#5V(x,2,0), with eigen-
values

l i5~0.5!$f@11#1f@21#1~21! i 11@41~f@11#

2f@21# !2#1/2%, i 51,2. ~2!

Introducing the 132 row vector â25(a2,1,a2,2),a2,i5exp

@2(21)ib(J11J3)#, and the 231 column vectorâ1 with ele-
mentsai ,151, the partition function

ZN52L$KL
~1!â2,11KL

~21!â2,2% ~3!

can be written as ZN52Lâ2M0
L21â1 . Using xi

52†1/$(f@11#2l i)c%‡,c5exp(bJ1), and Wi5@xi â2,1

1â2,2#/(x12x2)2 ( i 51,2), we obtain

ZN52L~x12x2! (
i 51,2

~21! i~x32 i21!Wil i
L21 . ~4!

In the thermodynamic limit,ZN is determined by the highes
eigenvalue. Sincel1.l2 the free energy per spin become
f 52(kBT/2)ln(2l1). The specific heat can also be e
pressed asC/kB52T@]2f /]T2#5(t/2)@]2$t ln(2l1)%/]t2#,
wheret5kBT/J1 . Except for theT→0 limit, divergences in
C are not present and a Shottky-type maximum emerge
the specific heat atTm'(1/kB)maxi51,2,3$Ji% ~Fig. 2!.

For the pair correlation function we applied the same p
cedure as used forZN . We have

ZNGN
2
„~p,a!;~q,b!…5Tr@Sp,aSq,bexp~2bHN!#

5 (
$S1,1, . . . ,SL,2%

Sp,aSq,bexp~2bHN!,

where without a loss of generality, we choose 1<p<q
<L. The final result is

ZNGN
2
„~p,a!;~q,b!…52Lâ2M0

p21s3
ua2buM1

q2pM0
L2qâ1 ,

~5!

re



th

te
in

-
ca

r

t

fe

-

si-

tem-

ag-
The

ing

PRE 58 5405CORRELATION TRANSITIONS IN THE ISING CHAIN . . .
where (M1) i ,i5g i5exp@(322i)bJ1#sinh@2b$J31(322i)J2%#
is a diagonal matrix. Using the eigenvalues ofM0 one can
write

ZNGN
2
„~p,a!;~q,b!…52L (

i , j ,k51,2
~21! i 1 j 1k11d j 21

3~12x32k!xlWil i
n1g j

n2lk
n3 , ~6!

where l 5(32 i )( j 21)1(22 j )k,d5(21)ua2bu,n15p
21,n25q2p, and n35L2q. In the thermodynamic limit
the pair-correlation function takes the form

G25 lim
N→`

GN
2 5@x1r1

n22dx2r2
n2

2rx1r3
n1~r1

n22dr2
n2!#/@x12x2#, ~7!

where r15g1 /l1 ,r25g2 /l1 ,r35l2 /l1 , and r
5W2 /W1 . As can be seen, three types of correlation leng
emerge,j i521/lnri , i51,2,3. Obviouslyj3 characterizes
the effect of the inhomogeneity induced by the mirror cen

The four types of correlation behavior are illustrated
Fig. 3. One ferromagnetic@Fig. 3~a!# and three types of an
tiferromagnetic decay were obtained. Each of these de
correspond to a long-range order atT50 ~see Fig. 6! of
which ~a! and~b! are symmetric and~c! and~d! are antisym-
metric to the mirror center.

Making use of Eq.~6!, we also derived an expression fo
the magnetic susceptibility that reduces to

x5
~gmB!2

J1
@2x1~11r1!#/@ t~x12x2!~12r1!# ~8!

in the thermodynamic limit. Divergences inx are not presen
except in the ferromagnetic case~domain I in Fig. 6! in the
T→0 limit @Fig. 4~a!#. Characteristic behaviors forx are
contained in Fig. 4.

The four-spin-correlation function

ZNGN
4 5 (

$S1,1, . . . ,SL,2%
Sp,aSq,bSr ,mSs,nexp~2bHN!

for 1<p<q<r<s<L was deduced via the same trans
matrix method. We find

FIG. 2. Specific heat (C/kB) as a function of the scaled tem
perature (t5kBT/J1) and the scaled coupling strengthJ3 /J1 . We
usedJ2 /J151 for this plot.
s

r.

ys
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ZNGN
4 52Lâ2M0

p21s3
ua2buM1

q2pM0
r 2qs3

um2nuM1
s2rM0

L2sâ1 ,
~9!

and using k15(32 i )( j 21)1(22 j )k,k25( l 21)(32m)
1(22 l ) i , d5(21)ua2bu, «5(21)um2nu, m15r 2q, m2
5s2r ,m35L2s,m45q2p, andm55p21 we obtain

GN
4

2L
5 (

i , j ,k,l ,m51,2

~21! i 1 j 1k1 l 1m11

ZN

3« j 21d l 21
~12x32k!xk1

xk2

~x12x2!
Wml i

m1g j
m2lk

m3g l
m4lm

m5 .

~10!

In the thermodynamic limit the summation gives

G45 lim
N→`

GN
4

5$rr3
m5@r3

m1A~m2 ,m2 ,x1 ,x1 ;«!A~m4 ,m4 ,x2 ,x1 ;d!

2A~m2 ,m2 ,x1 ,x2 ;«!A~m4 ,m4 ,x1 ,x1 ;d!#

1A~m2 ,m2 ,x1 ,x2 ;«!A~m4 ,m4 ,x1 ,x2 ;d!

2r3
m1A~m2 ,m2 ,x1 ,x1 ;«!A~m4 ,m4 ,x2 ,x2 ;d!%u1 ,

~11!

FIG. 3. Pair-correlation function as a function of the spin po
tions. One of the spins was fixed at the chain positionr 515, while
the other one was moved along the linear chain. The scaled
perature (t5kBT/J1) used for this plot wast54. Four types of
behavior were obtained by varying the coupling constantsJ2 /J1

andJ3 /J1 , whose values can be read from the plot. One ferrom
netic and three antiferromagnetic types of decay can be seen.
decays~a! and~b! are symmetric, while~c! and~d! are antisymmet-
ric with respect to the mirror center. The corresponding coupl
constant domains can be seen in Fig. 6.
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5406 PRE 58ISTVÁN DARUKA AND ZSOLT GULÁCSI
where A( i , j ,x,y;a)5xr1
i 2ayr2

j and um5Wm /W1(x1

2x2)2. It can be seen thatG4 consists of two parts. The firs
one, containing the factorr3

m5 , characterizes the influence o
the inhomogeneity induced by the mirror center. The sec
part ~independent ofr3) can be considered as the ‘‘homog
neous’’ contribution. The decay ofG4 is determined byr3 if
r 2q→` and by max$ur1u,ur2u% if s2r→` or q2p→`. The
connected part ofG4 given by Gc

4(1,2,3,4)5G4(1,2,3,4)
2G2(1,2)G2(3,4) becomes

Gc
45

r3
m1A~m2 ,m2 ,1,1;«!

~x12x2!2
@rx1r3

m5$A~m4 ,m4 ,x2 ,x1 ;d!

1r3
m4A~m4 ,m4 ,x1 ,x2 ;d!%

2A~m4 ,m4 ,1,1;d!A~0,0,x1x2 ,r 2x1
2 ;r3

m412m5!#.

~12!

Increasing the distancem1 between the pairs, the decay ofGc
4

is governed byr3 . The four typical behaviors are illustrate
in Fig. 5.

Being interested also in the study of local ordering,
derived an exact string-correlation expression. We start w
the definition

ZNLn5TrS1S2•••Snexp~2bHN!

5 (
Si561

S1S2•••Snexp~2bHN!,

FIG. 4. Magnetic susceptibility@in units of (gmB)2/J1] as a
function of the scaled temperature (t5kBT/J1). Two types of be-
havior were obtained for different values of couplings. For a cer
range of couplings~domain I in Fig. 6! we get a ferromagnetic
divergence att50 ~a!. The values of the scaled coupling constan
J2 /J1 andJ3 /J1 can be read from the plot.
d

th

whereS1 ,S2 , . . . ,Sn denotes a particular sequence ofn ad-
jacent spins. Then, using the same strategy as for the f
spin correlation function, the following explicit formula ca
be obtained@L̃n5(x12x2)(d12d2)Ln ,%(n)5r5

n/22r6
n/2#:

L̃n5 (
p561

yp$x1@xp%~n!2~d1r5
n/22d2r6

n/2!#

1@d1d2%~n!2xp~d2r5
n/22d1r6

n/2!#%, ~13!

wherei denotes the position of the first spin in the sequen
y15r3

i 21r ,y2521, and dm52b8/(a82tm),m51,2. The
a8,b8,t1 ,t2 ,r5 ,r6 coefficients depend upon the arrangeme

FIG. 6. T50 phase diagram. The four types of long-range ord
appearing in the model are represented by six spins around
mirror centerO ~vertical line!. The corresponding domains I, II, III
and IV are delimited by the solid lines.

n

FIG. 5. Four-point correlation function as a function of the sp
separationsm2 andm4 ~see the text! for different sets of coupling
constantsJ2 /J1 andJ3 /J1 displayed in the figure. The correspond
ing scaled temperature ist510/3. Both smooth and oscillatory de
cays can be seen.
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PRE 58 5407CORRELATION TRANSITIONS IN THE ISING CHAIN . . .
of the spins considered@26#. We emphasize thatLn always
vanishes atTÞ0 in then→` limit. For the sake of consis
tency, we note that theJ3→0 limit is properly reobtained for
all quantities presented above. In addition, the classical o
dimensional Ising results are recovered forJ15J250 or J1
5J350 and the contraction of any spin pairs inG4 leads to
G2.

In the T50 phase diagram forJ1.0 ~see Fig. 6! four
different domains can be found: a ferro phase in regio

FIG. 7. TÞ0 behavior of the model. In domainD ~see Fig. 6!,
below the coupling dependentTi , the dominant correlation length
is j1, which becomesj2 for T.Ti . Thus, as we increase the tem
perature, theT50, j2 domains expand to the dotted area and
T5` they reach the axes, occupying the hatched regions as w

FIG. 8. Correlation behavior~for domainD2 in Fig. 6! below
(t50.474) and above (t52.488)Ti . We usedJ2 /J1520.4975 and
J3 /J150.995 as scaled coupling constants for this plot. The p
correlation function changes its character: The ferromagnetic de
belowTi becomes antiferromagnetic aboveTi . The four-point cor-
relation function behaves similarly, though it vanishes atTi .
e-

I

~which also contains the domainsD1 and D2), an antiferro
phase symmetric with respect toO in region II ~which also
contains the domainsD3 and D4), striped antiferro order
with ferro subchains in region III~observed also in compet
ing Heisenberg spin ladders@25#!, and striped antiferro orde
with antiferro subchains in region IV. AtTÞ0, in the pres-
ence of fluctuations, extremely interesting and unusual
pects emerge. The system does not exhibit a long-range
der in this case, so one cannot speak about phase trans
in the usual context. However, the correlation functions
regionD ~see Fig. 6! behave qualitatively differently in dif-
ferent temperature regions, indicating that the system un
goes qualitative changes, even if these regions are not s
rated by a sharp, traditional phase transition. In regionD, at
m2.0 and«51 ~i.e., the third and fourth spins inG4 are not
identical and situated on the same side of the mirror ce
O) one can deduce a finite temperatureTi via the relation

Usinh@2b i~J21J3!#

sinh@2b i~J22J3!#
U5exp~22b iJ1!, ~14!

at which Gc
4 vanishes, independently of the spin position

Although the four-point correlation function vanishes for a

t
ll.

r-
ay

FIG. 9. Competing correlation lengths as a function of t
scaled inverse temperature (1/t). At 1/Ti the two correlation lengths
become equal, corresponding to a cusp in the dominating corr
tion length curve@max(j1,j2)#. In ~a! (J2 /J1520.4975, J3 /J1

50.995) the cusp does not appear as a local minimum, in con
to ~b! (J2 /J1520.4975,J3 /J150.5025), where the cusp is a loca
minimum of the dominating correlation length.
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5408 PRE 58ISTVÁN DARUKA AND ZSOLT GULÁCSI
spins atTi , it behaves qualitatively similar below@Fig. 8~c!#
and above@Fig. 8~d!# Ti , illustrating the strangeness of th
transition. Furthermore, atTi the long-range behavior of th
pair-correlation functionG2 changes its character. Thus,
Ti , the dominating correlation length inG2, j1
521/lnr1(T,Ti), becomesj2521/lnr2 (T.Ti), making
the long-range correlation behavior of the system strikin
different ~Fig. 9!. This transition is also illustrated in Fig. 7
where the leading correlation length domains are plotted
a finite temperature~dotted area!. We also note that atTi not
only the functional form of the correlation length but also t
nature of the long-range decay is changed. For example
the subdomainD2 the decay ofG2 is ferromagnetic forT
,Ti @Fig. 8~a!#, independent of the side index (a) of its spin
positions, while aboveTi @Fig. 8~b!# we haveG2.0 for both
spins on the same side ofO, but an antiferromagnetic long
range decay is obtained for spins on the opposite side
respect toO, i.e., the type-I correlation behavior is replac
by type III ~displayed in Fig. 6!. Therefore, in the single
chain picture the strange local ordering effect, which ste
from the competing interactions, can only be detected
away from the position where it emerges. Similarly, maki
use of the notations of Fig. 6, we witness in the domainD1 a
I→IV type transition, in domainD3 a II→IV type transition,
and in domainD4 a II→III type correlation behavior change
Also connected to changes in the pair-correlation functi
for 2.(a5612au(J31aJ2)/J1u and 0,J3,J2,J1 at T
→0, G2 is J1 and mirror-image side independent and
smoothly decaying function of distance. This is in contras
the high-T limit whereG2 becomes an oscillating function o
the distance and side andJ1 dependent. Finally, in the do
main Ji.0, J1 ,J2!1,J3@1, at intermediateb(J1 ,J2) tem-
peratures, screening effects are present in the correla
functions, i.e.,G i ’s are insensitive to the spin-position mod
fications within finite chain portions, signaling again an u
usual short-range-ordering effect.

We mention that correlation transitions were also fou
for the axial next-nearest-neighbor Ising~ANNNI ! chain@18#
at disorder lines in the phase diagram. In this case, the do
nating correlation length@max(j1,j2)# exhibits a local mini-
.
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mum ~in the form of a cusp!, while in our model the emerg
ing cusp is not necessarily a local minimum of th
dominating correlation length~Fig. 9!. Furthermore, in con-
trast to the ANNNI chain where one of the correlatio
lengths is always purely exponential, monotonic decay a
the other one is oscillatory with a parameter-dependent w
number, in our model both of the competing correlations c
be purely exponential, nonoscillatory decays~e.g., in the
subdomainD2 in Fig. 6! or if one of them is oscillatory~e.g.,
in the subdomainD1 in Fig. 6!, the wave number is constan
corresponding to an antiferromagnetic decay. Mention
these differences, we have to emphasize that since the e
four-point correlation function is not known for the ANNN
chain, the connection between the disorder lines and the
havior of the four-point function cannot be clearly esta
lished at the moment.

III. SUMMARY

We presented aTÞ0 exact solution for an Ising chain
with competing geometrical nearest-neighbor short-ra
and mirror-image-type long-range interactions deducing
act four-spin- and string-correlation functions. With the he
of these functions, unusualTÞ0 correlation effects were
found, indicating qualitative changes in the behavior of t
system in differentT domains that are not separated by
sharp, traditional phase transition. These domains are de
ited by a temperatureTi at which the exact connected fou
spin-correlation function vanishes. The described pha
transition-like process is provided by a frustration effect
competing interactions. We expect similar behavior to oc
in other systems where competing interactions are prese
well.
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