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We present exact four-spin- and string-correlation functions derived for an Ising chain with competing
geometrical nearest-neighbor short-range and mirror-image-type long-range interactions. UsuSu=drre-
lation effects were found, indicating qualitative changes in the behavior of the system in diffedlentains.
These domains are not separated by a sharp, traditional phase transition, but are delimited by a teffiperature
at which the exact connected four-spin-correlation function vanishes. At the $artiee pair-correlation
function changes its character: The functional form of the correlation length and the nature of the long-range
decay are modified.S1063-651X98)09610-X

PACS numbds): 64.60.Cn, 02.70.Lq, 05.560q

[. INTRODUCTION frustrated phase separation in hiipsuperconductorgl2],
to analyze the phase stability of metallic alldys], to ana-
The competition between long- and short-range interaclyze surface propertigd4|, to describe immunological reac-
tions in low-dimensional spin systems has been extensivelions in biological systemgl5], and to describe fractal prop-
studied recently. The unusual properties caused by compegrties and chaotic behavifit6] or even real compounds such
ing interactions, the common sources of frustration, makes TMCONJ[17].
these spin systems relevant to the description of a wide va- From the great variety of long-range interactions used in
riety of physical phenomena. Applications span over the folthese models, we concentrate on the mirror-image type-
lowing fields and effects. The crossover between the halinteractiong20]. Their importance has been emphasized by
integer and integer spin-chain behavior implemented by spisahimi and Stauffefr15], who proposed an Ising model with
ladders with competing interactions enables us to study theirror-image-type interactions in order to describe
effects emerging in connection with the Haldane conjecturédiotypic—anti-idiotypic immunological networks in connec-
[1]. Several material properties can be modeled usingion with natural immune systems. Simons and Altshuler
coupled chains for heavy fermions, Kondo lattices, and spinf21] studied a spin-1/2 Heisenberg antiferromagnetic spin
Peierls systemB2]. One can analyze the dimensional cross-chain based on an exchange between the spins and their im-
overs in magnetic systems, in particular from chains toages via an inverse square pairwise potential. They showed
square lattice§3]. The first-order quantum phase transitionsthat this system reveals a multiplet structure similar to
in one dimensiorf4] can be studied with the help of one- Haldane-Shastry moddlR2]. Furthermore, de Boeet al.
dimensional spin systems. Coupled spin-chain models allo23] pointed out that the structured patterns that emerge in
us to investigate the development@fdimensional magnetic such systems are reminiscent of those occurring in spinodal
long-range order af =0 associated with interchain coupling decomposition. We note that the latter process is of great
[5]. Low-dimensional spin systems can also be used to genterest due to its relevance in different decomposition sce-
insight into the nature of unusual ordering effects includingnarios in order-disorder system transformations or in self-
local, topological, or hidden ordering| that also relate to organization 23].
surface physics[7]. High-T. superconductivity or the The above considerations motivate us to find and study
Tomonaga-Luttinger liquids can be approached via Sr-Cu-@he exact solution of an Ising chain with competing interac-
ladders[8]. tions. In particular, we consider mirror-image-type long-
These applications cover a large spectrum of models, inrange interactions together with short-range components
cluding classical, Ising, and quantum systems. The interplagonsisting of geometrical nearest-neighbor couplings. The
between the different systems may be used to get insight intsystem is equivalent to two coupled Ising chains with short-
the nature of short-range ordering and finite-range orderingange interactions only, which are obtained by folding the
in quantum systemf2] or even to relate th& =0 quantum system about its geometrical center position. Besides the
aspects to th&@ # 0 classical behavig9]. properties related to strange local ordering effect3 &t0
Low-dimensional Ising spin systems are important in this(screening effects in correlation functions or local ordering
field since they serve as an intermediate step between thbat can only be detected far-away from the position where it
classical and quantum limits. In spite of their striking sim- emergep the paper presents an exact calculation of four-
plicity [10], Ising systems are complex, exhibiting an ex- spin- and string-correlation functions for a nontrivial case
tremely interesting behaviof11l]. As examples, low- [24]. Using these concepts, a completely new, phase-
dimensional Ising models containing competing interactiongransition-like behavior was found. We find qualitative dif-
have been used to give a coarse-grained representation f@fences in the behavior of the system in different tempera-
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Mirror axis In the following, we make use of the procedure presented in
l I, Ref.[20] and extend it to handle the mirror-image and geo-
| T 1 metrical neighbor interactions simultaneously to give an ex-
l ¢+ I act solution for the model.
L -3 2101 2 3 L The partition function is obtained by summing up the
| spin-pair contributions %, ;;S¢,), in steps for a fixedk,
I starting fromk=L, and decreasing by unity at each further
' ' ' step. A recurrence relation emerges and the penultimate step
Ja gives

FIG. 1. lllustration of the model. Each of théN2spins interacts
with its mirror image, with the two neighbors of its mirror image N _ eﬁ(J1+Js)Sl,181,z[ K
and with the two geometrical neighbors. The coupling strengths are2-~?1 S11.912
Ji,J,, andJs, respectively.

o

1V(p,81'1,8112)},
K{Y
ture domains that are not separated by a sharp, traditional K(l))’
phase transition, but are delimited by a temperaflireat '
which the exact connected four-spin-correlation function - ) : :
. . : , where the coefficientsK;” are determined recursively
vanishes. At the samd&; the pair-correlation function

: . : 1<l<L-1 and K{P=1. We have B=1/kgT
changes its character: The functional form of the correlatlor{Or 1 B
length and the nature of the long-range decay are modiﬁea_/(p,x,y)=exp(pﬁJl)posF[B(J2+pJ3)(X+£)y)], and Mﬂﬂ's
We interpreted this behavior as a peculiar frustration effec 2X2 matrix. given by Mo)nm=dnmdl(~1)"""]
of the competing interactions. + (1= S mexd (1) A, S[x]=V(x,2,0), with eigen-

We mention that similar effects called correlation transi-Values
tions emerging at the “disorder line” in the phase diagram _ _ _qyi+l
have been found in other Ising systems as W&8]. The M= (094l 11+ =1+ (=17 4+ (G +1]

1
Kfﬁl)

-1 = 0
Ki:7

disorder line corresponds to a local minimum in the correla- —¢[—1])?Y3, i=1.2. 2)
tion length in the form of a cuspl8]. As will be shown
below, in our case this is not necessarily true. Theéem-  Introducing the X2 row vectora,=(a, 1,8, ),8,; = EXP

perature deduced b_y us in the present model is related tto_(_l)iﬁ(\]ﬁ\]g)], and the 2¢1 column vectog, with ele-
zeros of the four-spin correlation function. mentsa, ;= 1, the partition function
1, ]l

The paper is structurated as follows. In Sec. Il we present
the model together with the 'deduced results. A summary in ZNZZL{Kﬁl)éZl_}_K(L—l)éZYZ} &)
Sec. Ill closes the presentation.

can be written as Zy=2'a,M§ 'a;. Using x

Il. MODEL AND OBTAINED RESULTS = —[1/(#[+1]-\;)c}l.c=exp8Jy), and Wi:[xiéz,l
We consider an open chain &f=2L localized S; ,= +a2,ﬂ/(x1—x2)2 (i=1,2), we obtain
+1 spins with a mirror-image centéd at its geometrical
center position. Heré=1, ... L indicates the distancd; Z=2L(x,— N _1)WLT 4
from O anda= 1,2 denotes the righiteft) [1 (2)] side of the N=270 XZ)izzlz( Ve mDWAT = (4)

chain with respect t® (Fig. 1). With these notations and
Hy=Hy—(J31+J3)S; 1S, », our HamiltoniarH  is given by Iq the thermoqunamic limitZy is determined by t_he highest
T eigenvalue. Sinca ;>\, the free energy per spin becomes
f=—(kgT/2)In(2\;). The specific heat can also be ex-
31Si+ 1184107 92(Si 1S+ 10+ S 5S4 1.0 pressed asCl/kg=—T[d?f/aT?]=(t/2)[ d¥{tIn(2\))}/ot?],
wheret=kgT/J;. Except for theT —0 limit, divergences in
C are not present and a Shottky-type maximum emerges in
, (1)  the specific heat al ,,~(1/kg)max_,,4J;} (Fig. 2.
For the pair correlation function we applied the same pro-
cedure as used fafy . We have

L-1
HN:_ 2
=1

+ :EMJg(S,asiH,a)

with the long range mirror-image interactidp, the interac-

tion with the nearest neighbors of the mirror imale and ZNFﬁ((p,a);(q,,B))zTr[Sp,aSq,Bexp(—,8H Nl
short-range couplings with the geometrical nearest neighbors

J;. For example, in natural immune system models, a so- _ _
calledT cell collects information about the invading virus via S s S 68X BHN),
the J, andJ, interactions, while the couplind; invokes an

information restoring mechanism: THecell tries to repro- where without a loss of generality, we choosesfi=<q
duce some missing information about the virus simply by=<L. The final result is

interpolation. To emphasize the connection with ladder prob- R .
lems, note thatH, also describes two coupled chaifi9], ZWL2((p,a);(9,8))=2"a,Mp Lol PIM§~PMS 93, ,
which are obtained by folding the system about the p@int )
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FIG. 2. Specific heat@/kg) as a function of the scaled tem-
perature {=kgT/J;) and the scaled coupling strengih/J,. We 1.0 1.0
. +2, -1 -2, +1
usedJ,/J;=1 for this plot.
0.5 0.5
where  My); ;= yi=exd(3—2)BJIsin{2B{J:+(3-2i),}] - e
is a diagonal matrix. Using the eigenvalueshf one can 0.0 0.0
write
-0.5 -0.5
Zyé((p,a);(q,8))=2" > (—1)ititkeigi-l 30 20 <10 0 10 20 30 30 20 <10 0 10 20 30
ijk=1.2 P P
><(1—X3_k)x|Wi)\F17?2)\E3, (6) FIG. 3. Pair-correlation function as a function of the spin posi-
tions. One of the spins was fixed at the chain positierl5, while
where I=3-i)(j—1)+(2-))k,6=(— 1)|“‘B\,n1: p the other one was moved along the linear chain. The scaled tem-
—1n,=q—p, andng=L—q. In the thermodynamic limit Pperature {=kgT/J;) used for this plot wag=4. Four types of
the pair-correlation function takes the form behavior were obtained by varying the coupling constaltsl,
andJ;/J,, whose values can be read from the plot. One ferromag-
2= lim T2=Ix:0"2— Sx.p"2 netic and three antiferromagnetic types of decay can be seen. The
N 0 N=Dxap 1 2P2 decayga) and(b) are symmetric, whiléc) and(d) are antisymmet-
ric with respect to the mirror center. The corresponding coupling
— X151 py2— 8po2) 1I[ X1 — X2], (7)  constant domains can be seen in Fig. 6.
where  p1=yi1/\1,p2=¥2/N1,pa=Na/N1,  and 1z T{=2'3,M5 tel MY PMY Yol IMS T TME Sy,
=W, /W, . As can be seen, three types of correlation lengths 9
emerge.£;=—1/lnp,, 1=1,2,3. Obviouslyé; characterizes

the effect of the inhomogeneity induced by the mirror centerand using k;=(3—i)(j—1)+(2—j)k,k,=(1—1)(3—m)
The four types of correlation behavior are illustrated in+(2—1)i, s=(—1) Bl e=(—1)» " m=r—q, m,

Fig. 3. One ferromagnetid-ig. 3(a@)] and three types of an- =s—r,my=L—s,m,=qg—p, andms=p—1 we obtain

tiferromagnetic decay were obtained. Each of these decays

correspond to a long-range order B&0 (see Fig. 6 of Ty (— 1) FitkHlrmel

which (a) and(b) are symmetric an¢c) and(d) are antisym- =

oL _ Z
metric to the mirror center. 27 likim=12 N
Making use of Eq(6), we also derived an expression for (1—X3_ 1) Xk Xk
the magnetic susceptibility that reduces to xegl~tg -1 ( )1 ZWm)\imlyr‘ZAE‘3y["4)\$5.
X17 X2
_(gup)’ (10)

X I, [2X1(1+p) V[t(Xa—X2)(1—p1)]  (8)

In the thermodynamic limit the summation gives

in the thermodynamic limit. Divergences jnare not present . 4

except in the ferromagnetic caggomain | in Fig. 6 in the "= lim I'y

T—0 limit [Fig. 4@]. Characteristic behaviors foy are N=e

contained in Fig. 4. — [y M5 My . .
={r A(My, My, X1,X1:€)A(My, My, Xo,X1:0
The four-spin-correlation function (o3 Lpg " A(Ma, My, X1 X138) A(My, My, X2 X139)
—A(my, My, X1,Xz;8)A(My, My, X1,X1;6)]
ZNFﬁI: z S Sp,asq,ﬁsr,yss,vexq_ﬁHN) +A(m2,mz,Xl,XZ;S)A(m4,m4,X1,Xz;5)

— pMA(My, My, X1, X1 €)A(My, My, Xo, X5 5)} 0
for 1spsqgsrss<L was deduced via the same transfer P3 AMa My Xy, X132)A(My My X, X5 0)} 61,

matrix method. We find (11)
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FIG. 5. Four-point correlation function as a function of the spin
separationsn, andm, (see the tejtfor different sets of coupling
FIG. 4. Magnetic susceptibilitfin units of (gug)?/J;] as a  constantsl,/J; andJ;/J; displayed in the figure. The correspond-
function of the scaled temperature=(kgT/J;). Two types of be-  ing scaled temperature ts=10/3. Both smooth and oscillatory de-
havior were obtained for different values of couplings. For a certair€ays can be seen.
range of couplinggdomain | in Fig. 6 we get a ferromagnetic
divergence at=0 (a). The values of the scaled coupling constantswheresS, ,S;, . .. ,S, denotes a particular sequencenchd-
J,/3; andJ3/J; can be read from the plot. jacent spins. Then, using the same strategy as for the four-
spin correlation function, the following explicit formula can
where A(i,j,x,y;a)=xpi—ayph and 6,=W,/W;(x; be obtained Z,=(x;~X7)(d1~d5) Ln,0(n)=p5?~ pg?l:
—X,)2. It can be seen thdt* consists of two parts. The first

t t

one, containing the factgr.®, characterizes the influence of Lo= E yp{xl[xpg(n)—(dlpglz— dnglz)]

the inhomogeneity induced by the mirror center. The second p==1

part(independent op3) can be considered as the “homoge- -~ n2_ 4 ni2

neous” contribution. The decay & is determined by if Fd1d20 () =Xp(dzps™—daps )11, (13

r —g—oo and by mafp,|,|ps} if s—r—o orq—p—c. The
connected part of"* given by I'%(1,2,3,4)=T"%(1,2,3,4)
—T2(1,2)I'%(3,4) becomes

wherei denotes the position of the first spin in the sequence,
yi=pj5 r,y,=-1, and d,=—b'/(a’' —t,),m=1,2. The
a’,b’,t1,t5,ps5,pg coefficients depend upon the arrangement

pghA(mz,mz,l,l;s)[r A ) D=D, UD, UD, UD,
X1p yMy, X2, X1,
(X1= %) He T 24,14,

ri=

+pgtA(My, My, X1, X3 0)} i
— A(My, My, 1,1;8)A(0,0x,%,,1 225 p 4 2™) .
ARARYY EERRRY
(12
<4
~ "N
B
Increasing the distanag,; between the pairs, the decaylbj 1 J. I
is governed bys. The four typical behaviors are illustrated 2
in Fig. 5.
Being interested also in the study of local ordering, we bvtltvt vhvitvt
derived an exact string-correlation expression. We start with
the definition Il / v
ZNLn=TIS, S - - Spexp(— BH) FIG. 6. T=0 phase diagram. The four types of long-range order
appearing in the model are represented by six spins around the
= E S,S,- - - Spexp(— BHY), mirror centerO (vertical ling. The corresponding domains I, 11, lIl,
S==1

and IV are delimited by the solid lines.
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FIG. 7. T#0 behavior of the model. In domald (see Fig. 6,
below the coupling dependeifit, the dominant correlation length 5l
is &4, which becomeg, for T>T;. Thus, as we increase the tem- =
perature, theT=0, & domains expand to the dotted area and at "6"
T=ow they reach the axes, occupying the hatched regions as well. & 1.5
(]
-
of the spins considerel®6]. We emphasize that,, always -
vanishes af #0 in then—co limit. For the sake of consis- @
tency, we note that thé— 0 limit is properly reobtained for 3
all quantities presented above. In addition, the classical oneQ) °-5
dimensional Ising results are recovered Jgr=J,=0 or J,
=J;=0 and the contraction of any spin pairslit leads to ‘ ‘ ‘ ‘ ‘
2 10 20 30 40 50
In the T=0 phase diagram fod,;>0 (see Fig. & four 11

different domains can be found: a ferro phase in region I FIG. 9. Competing correlation lengths as a function of the

scaled inverse temperature t)1/At 1/T; the two correlation lengths
a become equal, corresponding to a cusp in the dominating correla-

12 tion length curve[ max¢;,&)]. In (@ (J,/J;=-0.4975, 35/,
=0.995) the cusp does not appear as a local minimum, in contrast

09 to (b) (J,/3,=—0.4975,J5/3,=0.5025), where the cusp is a local

r2 minimum of the dominating correlation length.

0.6
(which also contains the domaims; andD,), an antiferro

03 phase symmetric with respect @in region Il (which also
contains the domain®; and D,), striped antiferro order

with ferro subchains in region ll{lobserved also in compet-
ing Heisenberg spin laddej85]), and striped antiferro order
with antiferro subchains in region IV. AI#0, in the pres-

0.0 f
-30 20 -10 0 10 20 30

b ence of fluctuations, extremely interesting and unusual as-
pects emerge. The system does not exhibit a long-range or-
0.9 der in this case, so one cannot speak about phase transitions
in the usual context. However, the correlation functions in
0.6 regionD (see Fig. 6 behave qualitatively differently in dif-
r2 ferent temperature regions, indicating that the system under-
0.3 goes qualitative changes, even if these regions are not sepa-
rated by a sharp, traditional phase transition. In redrat
0.0 m,>0 ande =1 (i.e., the third and fourth spins ii* are not

identical and situated on the same side of the mirror center
O) one can deduce a finite temperatUrevia the relation

30 20 -10 0 10 20 30

_FIG. 8. Correlation behavioffor domainD, m_Flg. 6) below sinf[2,8i(\]2+\]3)]‘
(t=0.474) and abovet 2.488)T; . We usedl,/J;=—0.4975 and . =exp(—2B;J1), (14)
J3/3,=0.995 as scaled coupling constants for this plot. The pair- sin{ 23(J,— J3)]|

correlation function changes its character: The ferromagnetic decay _ 4 ) _ _ N
below T; becomes antiferromagnetic abole The four-point cor- ~ at which I'¢ vanishes, independently of the spin positions.
relation function behaves similarly, though it vanished at Although the four-point correlation function vanishes for any
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spins afT;, it behaves qualitatively similar belolfFig. 8(c)] mum (in the form of a cusp while in our model the emerg-
and abovdFig. 8d)] T;, illustrating the strangeness of this ing cusp is not necessarily a local minimum of the
transition. Furthermore, & the long-range behavior of the dominating correlation lengttFig. 9. Furthermore, in con-
pair-correlation functiorl'? changes its character. Thus, at trast to the ANNNI chain where one of the correlation
T;, the dominating correlation length inI'?, &; lengths is always purely exponential, monotonic decay and
= —1/Inp,(T<T;), becomesé&,=—1/Inp, (T>T;), making the other one is oscillatory with a parameter-dependent wave
the long-range correlation behavior of the system strikinglynumber, in our model both of the competing correlations can
different (Fig. 9). This transition is also illustrated in Fig. 7, be purely exponential, nonoscillatory decagesg., in the
where the leading correlation length domains are plotted fosubdomairD, in Fig. 6) or if one of them is oscillatorye.qg.,

a finite temperaturédotted area We also note that &f; not  in the subdomaif; in Fig. 6), the wave number is constant,
only the functional form of the correlation length but also thecorresponding to an antiferromagnetic decay. Mentioning
nature of the long-range decay is changed. For example, ithese differences, we have to emphasize that since the exact
the subdomairD, the decay ofl'? is ferromagnetic forT ~ four-point correlation function is not known for the ANNNI
<T; [Fig. 8a)], independent of the side index) of its spin  chain, the connection between the disorder lines and the be-
positions, while abov@; [Fig. 8(b)] we havel'>>0 for both  havior of the four-point function cannot be clearly estab-
spins on the same side 6f, but an antiferromagnetic long- lished at the moment.

range decay is obtained for spins on the opposite side with

respect taO, i:e., the ty.pe—l.correlation behayior is rgplaced . SUMMARY

by type lll (displayed in Fig. & Therefore, in the single-

chain picture the strange local ordering effect, which stems We presented & #0 exact solution for an Ising chain
from the competing interactions, can only be detected fawith competing geometrical nearest-neighbor short-range
away from the position where it emerges. Similarly, makingand mirror-image-type long-range interactions deducing ex-
use of the notations of Fig. 6, we witness in the donfaima  act four-spin- and string-correlation functions. With the help
|— IV type transition, in domaiD 5 a Il— IV type transition, of these functions, unusudl#0 correlation effects were
and in domairD 4 a II— 1l type correlation behavior change. found, indicating qualitative changes in the behavior of the
Also connected to changes in the pair-correlation functionsystem in differenfT domains that are not separated by a
for 2>3 ,_ . 12a|(J3+ady)/Jq| and 0<J3<J,<J; at T sharp, traditional phase transition. These domains are delim-
—0, I'? is J; and mirror-image side independent and aited by a temperatur&; at which the exact connected four-
smoothly decaying function of distance. This is in contrast taspin-correlation function vanishes. The described phase-
the highT limit whereI'? becomes an oscillating function of transition-like process is provided by a frustration effect of
the distance and side ardd dependent. Finally, in the do- competing interactions. We expect similar behavior to occur
mainJ;>0, J;,J,<1,J;>1, at intermediatgg(J;,J,) tem-  in other systems where competing interactions are present as
peratures, screening effects are present in the correlationell.
functions, i.e.I'"’s are insensitive to the spin-position modi-
fications within finite chain portions, signaling again an un-
usual short-range-ordering effect.

We mention that correlation transitions were also found The research of Zs.G. was supported by OTKA-022874
for the axial next-nearest-neighbor IsiGNNNI) chain[18] and AKP-96/2-626/2.2 contracts. |.D. is grateful to the
at disorder lines in the phase diagram. In this case, the domkereskedelmi Bank Rt. Univ. Foundation for financial sup-
nating correlation lengthmax(;,&,)] exhibits a local mini-  port.
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